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Topos Perspective on the Kochen–Specker
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Base Category
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We extend the topos-theoretic treatment given in previous papers of assigning
values to quantities in quantum theory, and of related issues such as the
Kochen–Specker theorem. This extension has two main parts: the use of von
Neumann algebras as a base category and the relation of our generalized valuations
to (i) the assignment to quantities of intervals of real numbers and (ii) the idea
of a subobject of the coarse-graining presheaf.

1. INTRODUCTION

Two previous papers [1, 2] have developed a topos-theoretic perspective
on the assignment of values to quantities in quantum theory. In particular, it
was shown that the Kochen–Specker theorem (which states the impossibility
of assigning to each bounded self-adjoint operator on a Hilbert space of
dimension greater than 2 a real number such that functional relations are
preserved) is equivalent to the nonexistence of a global element of a certain
presheaf S, called the spectral presheaf, defined on the category 2 of bounded
self-adjoint operators on a Hilbert space *. In particular, the Kochen–Specker
theorem’s FUNC condition—which states that assigned values preserve the
operators’ functional relations—turns out to be equivalent to the ‘matching
condition’ in the definition of a global section of the spectral presheaf. It
was similarly shown that the Kochen–Specker theorem is equivalent to the
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nonexistence of a global element of a presheaf D—called the dual presheaf—
defined on the category 0 of Boolean subalgebras of the lattice +(*) of
projectors on *.

It was also shown that it was possible to define so-called generalized
valuations on all quantities according to which any proposition “A P D”
(read as saying that the value of A lies in the Borel set of real numbers D)
is assigned, in effect, a set of quantities that are coarse-grainings (functions)
of A. To be precise, it is assigned a certain set of morphisms in the category
2 (or 0), the set being required to have the structure of a sieve. These
generalized valuations obey a condition analogous to FUNC and other natural
conditions. Furthermore, each (pure or mixed) quantum state defines such
a valuation.

In this paper, we will extend this treatment in two main ways. The first
corresponds to our previous concerns with the Kochen–Specker theorem and
global sections and with generalized valuations based on sieves. Thus, we
will first discuss the issues adumbrated above in terms of a base category
different from 2 and 0: namely, the category 9 of commutative von Neumann
subalgebras of an algebra of operators (Sections 2 and 3).

Second, we will further develop the idea of a generalized valuation
(Section 4). In particular, we introduce the idea of an interval-valued valuation:
at its simplest, the idea is to assign to a quantity A—not an individual member
of its spectrum, as vetoed by the Kochen–Specker theorem—but rather,
some subset of it. Though this idea seems at first sight very different from
generalized valuations that assign sieves to propositions “A P D,” we shall
see that the two types of valuations turn out to be closely related.

2. VON NEUMANN ALGEBRAS

2.1. Introducing 9

We will first rehearse the definitions given in the previous papers [1, 2]
of the categories 2 and 0 defined in terms of the operators on a Hilbert
space over which various presheaves may be usefully constructed. Then we
will introduce a new base category 9 which has as objects commutative von
Neumann algebras and relate it to 2 and 0.

The categories 2 and 0 were defined as follows. The objects of the
category 2 are the bounded self-adjoint operators on the Hilbert space * of
some quantum system. A morphism f2: B̂ → Â is defined to exist if B̂ 5
f (Â ) [in the sense of ref. 1, Eq. (2.4)] for some Borel function f. This category
is a preorder, and may be turned into a partially ordered set by forming
equivalence classes of operators. Operators Â and B̂ are considered equivalent
whenever they are isomorphic in the category 2, i.e., when there exist some



Topos Perspective on Kochen–Specker Theorem 1415

Borel functions f and g such that B̂ 5 f (Â ) and Â 5 g(B̂ ). The category
obtained in this way is denoted [2].

The category 0 is defined to have as its objects the Boolean subalgebras
of the lattice +(*) of projectors on *. A morphism is defined to exist from
W1 to W2 if, and only if, W1 # W2. Thus 0 is just a partially ordered set
(poset) equipped with the natural categorical structure of such a poset.

This category 0 is related to 2 via the covariant spectral algebra functor
W: 2 → 0, which is defined as follows:

• On objects: W(Â ) :5 WA , where WA is the spectral algebra of the
operator Â [i.e., the collection of all projectors onto the subspaces
of * associated with Borel subsets of s(Â )].

• On morphisms: If f2: B̂ → Â, then W( f2): WB → WA is defined as
the subset inclusion iWBWA: WB → WA.

Note that operators in the same equivalence class in [2] will always have
the same spectral algebra.

We now wish to introduce a new base category 9 of commutative von
Neumann algebras. We first recall (see, e.g., ref. 6) a few facts about von
Neumann algebras.

A (not necessarily commutative) von Neumann algebra 1 is a C*-
algebra of bounded operators on a Hilbert space * which is closed in the
weak operator topology. The algebra 1 is generated by its lattice of projectors
+(1), and is equal to its own double commutant and to the double commutant
of +(1):

+(1)9 5 19 5 1 (2.1)

The algebra contains all operators obtainable as Borel functions f (Â) of all
normal operators Â P 1.

We now define the category 9 associated with the Hilbert space * of
some quantum system. The objects V in 9 are the commutative von Neumann
subalgebras of the algebra B(*) of bounded operators on *, and the morph-
isms in 9 are the subset inclusions—so if V2 # V1, we have a morphism
iV2V1: V2 → V1. Thus the objects in the category 9 form a poset.

The category 9 is related to 2 via a covariant functor in a similar way
to 0:

Definition 2.1. The von Neumann algebra functor is the covariant functor
V: 2 → 9 defined as follows:

• On objects: V(Â ) :5 V[A], where V[A] is the commutative von
Neumann algebra generated by the self-adjoint operator Â.

• On morphisms: If f2: B̂ → Â, then V( f2): V[B] → V[A] is defined
as the subset inclusion iVBVA: V [B] → V [A].
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There is an even simpler relation between 0 and 9:

Definition 2.2. The algebra generation functor is the covariant functor
VW: 0 → 9 defined as follows:

• On objects: VW(W ) :5 W 9, where W 9 is the double commutant of
W in the algebra B(*) of all bounded operators on *, so that VW(W )
is the commutative von Neumann algebra generated by the projection
operators in W.

• On morphisms: If iW2W1: W2 → W1, then VW(iW2W1): W 92 → W 91 is
defined as the subset inclusion iV2V1: W 92 → W 91.

The category 9 seems to give the most satisfactory description of the
ordering structure of operators. In particular, there is no problem with isomor-
phic operators: any operator isomorphic to Â will always be included in any
subalgebra which contains Â. Also, each von Neumann algebra contains the
spectral projectors of all its self-adjoint members, so in a sense 9 subsumes
both 2 and 0.

Using 9 as the base category is also appealing from an interpretative
point of view. Many discussions and proofs of the Kochen–Specker theorem
are written in terms of subalgebras of operators and their relations.3

2.2. Presheaves on 9

The spectral presheaf S over 2 was introduced in ref. 1. We now define
the corresponding presheaf over 9 and the state presheaf over 9.

2.2.1. The Spectral Presheaf S

We recall (see, e.g., ref. 6) that the spectrum s(V ) of a commutative
von Neumann algebra V is the set of all multiplicative linear functionals k:
V → C. Such a functional assigns a complex number k(Â ) to each operator
Â P V such that k(Â )k(B̂ ) 5 k(ÂB̂ ). If Â is self-adjoint, k(Â ) is real and
belongs to the spectrum of the operator Â in the usual way.

Furthermore, s(V ) is a compact Hausdorff space when it is equipped
with the weak-* topology, which is the weakest topology such that, for all
Â P V, the map Ã: s(V ) → C defined by

Ã(k) :5 k(Â ) (2.2)

is continuous. The quantity Ã defined in Eq. (2.2) is known as the Gelfand

3 In particular, Kochen and Specker in their original paper [3] formulate their theorem in terms
of partial algebras, which have a similar category-theoretic structure. Some recent work on
the ‘modal interpretation’ focuses on certain ‘beable’ subalgebras of operators as those on
which valuations can be constructed [4, 5].
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transform of Â, and the spectral theorem for commutative von Neumann
algebras asserts that the map Â ° Ã is an isomorphism of V with the algebra
C(s(V )) of complex-valued, continuous functions on s(V ).

Definition 2.3. The spectral presheaf over 9 is the contravariant functor
S: 9 → Set defined as follows:

• On objects: S(V ) :5 s(V ), where s(V ) is the spectrum of the commu-
tative von Neumann algebra V, i.e., the set of all multiplicative linear
functionals k: V → C.

• On morphisms: If iV2V1: V2 → V1, so that V2 # V1, then S(iV2V1):
s(V1) → s(V2) is defined by S(iV2V1) (k) :5 k.V2, i.e., this is the
restriction of the functionals k: V1 → C to V2.

As discussed in ref. 1, for the base category 2, the Kochen–Specker
theorem may be written in terms of the spectral presheaf. If it existed, a
global element of S over 9 would assign a multiplicative linear functional
k: V → C to each commutative von Neumann algebra V in 9 in such a way
that these functionals match up as they are mapped down the presheaf. To
be precise, the functional k on V would be obtained as the restriction to V
of the functional k1: V1 → C for any V1 $ V.

Furthermore, when restricted to the self-adjoint elements of V, a multipli-
cative linear functional k satisfies all the conditions of a valuation, namely:

1. The (real) value k(Â ) of Â must belong to the spectrum of Â.
2. The functional composition principle (FUNC )

k(B̂ ) 5 f(k(Â )) (2.3)

holds for any self-adjoint operators Â, B̂ P V such that B̂ 5 f(Â ).

The Kochen–Specker theorem, which states that no such valuations
exist on all operators on a Hilbert space of dimension greater than two, can
therefore be expressed as the statement that the presheaf S over 9 has no
global elements. The matching condition outlined above therefore cannot be
satisfied over the whole of 9.

It is worth noting that a spectral presheaf may be associated with any
(noncommutative) von Neumann algebra 1 by first considering the poset
!(1) of all of its commutative subalgebras as a category and then constructing
the functor S: ! → Set in the above manner. Similar comments apply to
the other constructions introduced in the rest of this section.

2.2.2. The State Presheaf S

A state r on a C*-algebra # with unit 1 is a functional r: # → C that is
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1. linear
2. positive, i.e., r(AA*) $ 0 for all A P #
3. normalized, so that r(1) 5 1

(see, e.g., ref. 6, p. 255). The space S of all states on some C*-algebra # of
operators is a convex set whose extreme points are the pure states. If # is
commutative, a state r is pure if and only if it is a multiplicative functional,
i.e., r(ÂB̂ ) 5 r(Â )r(B̂ ) for all Â, B̂ P #. The set of pure states is therefore
the spectrum of #; in particular, the real number r(Â ) will belong to the
spectrum of Â for all self-adjoint operators Â P #.

We now define the state presheaf.

Definition 2.4. The state presheaf S over 9 is the contravariant functor
S: 9 → Set defined as follows:

• On objects: S(V ) is the space of states of the commutative von
Neumann algebra V.

• On morphisms: If iV2V1: V2 → V1, so that V2 # V1, then S(iV2V1):
S(V1) → S (V2) is the restriction of the state functionals in S(V1) to V2.

A global element of this presheaf is an assignment of a state to each
commutative von Neumann subalgebra that is consistent in the sense that
the state on any subalgebra V1 may be obtained by restriction from any larger
subalgebra, i.e., if V1 # V2 and V1 # V3, then the states r2 on V2 and r3 on
V3 must agree on their common subalgebra, so that

r2(Â ) 5 r3(Â ) (2.4)

for all Â P V1.
One way to achieve this is to take a state r* on the (noncommutative)

von Neumann algebra B(*)—for example, given by a density matrix—and
assign to each commutative subalgebra V the state r*.V obtained by the
restriction of r* to V. However, there may be other global elements of S
which are not obtainable in this way.

The Kochen–Specker theorem tells us that the consistency condition
above cannot be satisfied for an assignment of a pure state to each commuta-
tive subalgebra in 9, as this would also be a global element of S, and hence
would correspond to a global valuation.

3. SIEVE-VALUED GENERALIZED VALUATIONS

In Section 2, we described the prohibition on global assignments of
real-number values to quantum-theoretic quantities (the Kochen–Specker
theorem), in terms of the state and spectral presheaves on 9. In this section,
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we will describe some possible generalized valuations which are not excluded
by the Kochen–Specker theorem.

These constructions will have certain properties which strongly suggest
that they are appropriate generalizations of the idea of a valuation—in particu-
lar, they satisfy a functional composition principle analogous to Eq. (2.3).

Sieve-valued valuations with these properties were introduced in ref. 1
using the base categories 2 and 0. These were motivated by the observation
that partial, real-number-valued valuations (i.e., defined on only some subset
of quantities) give rise to such valuations, and it was shown that quantum
states could be used to define such valuations. In ref. 2, these valuations were
given more general motivations; in particular, classical physical analogues of
the quantum-theoretic valuations were given.

This section extends the discussions in refs. 1 and 2. First, we adapt to
9 the definitions, results, and discussion of sieve-valued valuations. We will
then look at other possible types of generalized valuation, namely those which
are obtained by assigning to each quantity a subset of its spectrum. Some
examples of these interval-valued valuations are exhibited and related to the
previous sieve-valued valuations.

3.1. The Coarse-Graining Presheaf G

We will follow refs. 1 and 2 in assigning sieves primarily, not to quanti-
ties, but to propositions about the values of quantities. In refs. 1 and 2, sieves
were assigned to propositions saying that the value of a quantity Â lies in a
Borel set D , s(Â ), or, more precisely, to the mathematical representative
of the proposition, a projector Ê[A P D] in the spectral algebra WA of Â.

The coarse-graining presheaf was defined over 2 (ref. 1, Def. 4.3) to
show the behavior of these propositions as they are mapped between the
different stages of the presheaf. Thus the coarse-graining presheaf over 2 is
the contravariant functor G: 2 → Set defined as follows:

• On objects in 2: G(Â ) :5 WA , where WA is the spectral algebra of Â.
• 0n morphisms in 2: If f2: B̂ → Â [i.e., B̂ 5 f(Â )], then G( f2):

WA → WB is defined as

G( f2)(Ê[A P D]) :5 Ê[ f(A) P f(D)] (3.1)

Note that the action of this presheaf coarsens propositions (and their associated
projectors) since the function f will generally not be injective and so Ê[ f (A) P
f (D)] $ Ê[A P D].

There are some subtleties arising from the fact that for D a Borel subset
of s(Â ), f (D) need not be Borel. These are resolved in ref. 1, Theorem (4.1),
by using the fact that if Â has a purely discrete spectrum [so that, in particular,
f (D) is Borel], then
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Ê[ f (A) P f (D)] 5 inf{Q̂ P Wf(A) # WA.Ê[A P D] # Q̂} (3.2)

where the infimum of projectors is taken in the (complete) lattice structure
of all projectors on *. For a general self-adjoint operator Â we used this in
ref. 1 to define the coarse-graining operation; in other words, the projection
operator denoted by Ê[ f (A) P f (D)] is defined using the right-hand side of
Eq. (3.2).

This infimum construction is used again in ref. 1, Section 5.3, to define
a corresponding coarse-graining presheaf over 0, and our construction of
G over 9 is similar to this. Specifically, we define:

Definition 3.1. The coarse-graining presheaf over 9 is the contravariant
functor G: 9 → Set defined as follows:

• On objects: G(V ) is the lattice +(V ) of projection operators in V.
• On morphisms: if iV2V1: V2 → V1, then G(iV2V1): +(V1) → +(V2) is

the coarse-graining operation defined on P̂ P +(V1) by

G(iV2V2)(P̂ ) :5 inf{Q̂ P +(V2).P̂ # iV2V1(Q̂)} (3.3)

where the infimum exists because +(V2) is complete.

The coarse-graining presheaf will play a central role in the definition
of various types of generalized valuation. To set the scene, we will now
discuss how propositions about the quantum system behave when coarse-
grained to different stages in the base category 9. As we will now see, this
is more subtle than the analogous process using the base category 2 or 0
(discussed in refs. 1 and 2).

In 2, a proposition about a quantum system at some stage Â P 2 is a
statement “A P D” that the value of the quantity A lies in some Borel subset
D of the spectrum s(Â ) of the self-adjoint operator Â that represents A. This
proposition is associated with the stage Â in 2, and is represented by the
projector Ê[A P D] P WA , where WA is the spectral algebra of Â. For any
f2: B̂ → Â, so that B̂ 5 f(Â ), the coarse-graining operation acts on the projector
as follows:

G( f2)(Ê[A P D]) 5 Ê[ f (A) P f (D)] 5 Ê[B P f (D)] (3.4)

where Ê[B P f (D)] is understood in the sense explained above.
This idea of coarse-graining means that the proposition “A P D” at

stage Â in 2 ‘changes’ in two ways under coarse-graining. First, the associated
projector may change—we can have Ê[ f (A) P f (D)] . Ê[A P D]. The
second change—which always occurs—is that the stage of the proposition
changes: after coarse-graining, we have a proposition at stage f (Â ) in 2, so
that the representing projector Ê[ f (A) P f (D)] is thought of as belonging to
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Wf (A) even if, in fact, Ê[ f (A) P f (D)] 5 Ê[A P D]. In short: there is no
difficulty in interpreting a proposition (or projector) at a stage as associated
with that stage’s quantity.

Similar remarks apply to 0. The main difference from 2 is that for 0,
a stage corresponds to an equivalence class of quantities or operators (viz.
under the relation of being functions of each other), not a single quantity or
operator. This just means that we interpret a proposition “A P D”, or projector
Ê[A P D], as associated with the entire stage, i.e., the Boolean algebra WA ,
not with the specific quantity A or the specific operator Â. But the main point
remains the same: that with either 2 or 0, there is no difficulty in interpreting
a proposition or projector at a stage as associated with that stage—be it
a quantity/operator, or an equivalence class, or common spectral algebra,
of such.

However, in 9, the role of propositions such as “A P D” and the
corresponding projectors Ê[A P D] is not so clear. For any stage V with
Â P V, the projector Ê[A P D] will belong to the spectral algebra of many
different operators in V. Indeed, it will generally also belong to the spectral
algebra of many operators not in V, so we may write the projector as Ê[B P
DB] for a large number of operators B̂ with corresponding sets DB , s(B̂ )
and with B̂ ¸ V.

So intuition pulls in two directions. On one hand, similarly to 0 above,
the fact that the objects of the base category 9 are not operators, but von
Neumann algebras, prompts us to interpret a proposition “A P D” as associated
with the entire stage, i.e., with the algebra V, rather than with the specific
physical quantity A or the corresponding specific operator Â. On the other
hand, similarly to 2 above, operators are elements of stages, so that when Â
does belong to V it seems natural to think of a proposition “A P D” at a
stage V in terms of the operator Â.

We favor the former option, since the latter option faces difficulties
when we consider coarse-graining to a stage V2 , V1 which may not contain
the operator Â. To spell these out, let us start by noting that to understand
how the proposition “A P D” at stage V1 (or, more precisely, the projector
Ê[Â P D] P +(V1)) coarse-grains to some stage V2 , V1 according to
Definition 3.1,

G(iV2V1)(Ê[A P D]) 5 inf{Q̂ P +(V2).Ê[A P D] # iV2V1(Q̂ )} (3.5)

we need in general to consider three possibilities according to whether or
not Â and the projector Ê[A P D] are in V2:

1. Â P V2. In this case, Ê[A P D] P +(V2) , V2, and so the projector
coarse-grains to itself : G(iV2V1)(Ê[A P D]) 5 Ê[A P D]. And since
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Â P V2, it is natural to assign the same interpretation—as a proposi-
tion about the value of Â—to the coarse-grained projector.

2. Â ¸ V2, but Ê[A P D] P V2. In this case, the projector Ê[A P D]
still coarse-grains to itself, mathematically speaking. However, it is
not clear how the projector at stage V2 could be interpreted in terms
of the value of Â, since Â is not present at that stage.

3. Â ¸ V2 and Ê[A P D] ¸ V2. In this case, the coarse-grained projector
is not the same as the original one, and so the proposition associated
with it will no doubt be different. It is again unclear how one could
interpret the coarse-grained projector in terms of Â: indeed, there
is in general no clear choice as to which operator in V2 is to be the
topic of the coarse-grained proposition.

In the light of these difficulties, we will instead adopt the first option
above: we interpret a projector P̂ P +(V1) as a proposition about the entire
stage V1. Formally, we can make this precise in terms of the spectrum of the
algebra V1. That is to say, we note that:

• Any projector P̂ P +(V1) corresponds not only to a subset of the
spectrum of individual operators Â P V (where P̂ P WA so P̂ 5
Ê[A P D] for some D , s(Â )), but also to a subset of the spectrum
of the whole algebra V1, namely, those multiplicative linear function-
als k: V1 → C such that k(P̂ ) 5 1.

• Coarse-graining respects this interpretation in the sense that if we
interpret P̂ P +(V1) as a proposition about the spectrum of the algebra
V1, then the coarse-graining of P̂ to some V2 , V1 given by inf{Q̂
P +(V2).P̂ # iV2V1(Q̂ )} is a member of +(V2), and so can be inter-
preted as a proposition about the spectrum of the algebra V2.

This treatment of propositions as concerning the spectra of commutative
von Neumann algebras, rather than individual operators, amounts to the
semantic identification of all propositions in the algebra corresponding to
the same mathematical projector. Thus, when we speak of a proposition
“A P D” at some stage V, with Â P V, we really mean the corresponding
proposition about the spectrum of the whole algebra V defined using the
projector Ê[A P D]. In terms of operators, the proposition “A P D” is
augmented by incorporating in it all corresponding propositions “B P DB”
about other operators B̂ P V such that the projector Ê[A P D] belongs to
the spectral algebra of B̂, and Ê[A P D] 5 Ê[B P DB].

Definition 3.2. The augmented proposition at stage V in 9 associated
to the projector P̂ P V is the collection of all propositions of the form
“A P D,” where Â P V and the Borel set D , R is such that Ê[A P D] 5 P̂.
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These augmented propositions in 9 then coarse-grain in an analogous
way to standard propositions in 2: the augmented proposition “A P D” at
stage V1 is coarse-grained to “f(A) P f(D)” and the result is an augmented
proposition at the lower stage V2.

In ref. 1, Section 4.2.3, it was noted that the coarse-graining presheaf
over 2 was essentially the same as the presheaf BS over 2, which assigns
to each Â in 2 the Borel subsets of the spectrum of Â. The presheaf BS on
2 was essentially the Borel power object of S containing those subobjects
of S which are formed of Borel sets of spectral values, with a projector
Ê[A P D] P G(Â ) corresponding to the Borel subset D , S(Â ). This
connection between projectors and subsets of spectra carries over to the
algebra case.

A projection operator P̂ P V corresponds to a subset of the spectrum
of V, namely the set of multiplicative linear functionals k on V such that
k(P̂ ) 5 1. Bearing in mind that, for each Â in @(*), the function Ã: s(V ) °
C given by the Gelfand transform of Â, Ã(k) :5 k(Â ), is continuous, we see
that the subset of the spectrum of s(V ) that corresponds to P̂ is closed in
the compact Hausdorff topology of s(V ).

In fact, we can say more than this since, by virtue of the spectral theorem
for commutative C*-algebras, the operator P̂ P V is represented by a function
P̃: s(V ) → R. Since P̂ 2 5 P̂, we see that P̃ is necessarily the characteristic
function, xP say, of some subset of V, namely the set of all multiplicative
linear functionals k on V such that k(P̂ ) 5 1. However, by virtue of the
spectral theorem, xP is in fact a continuous function from s(V ) to [0, 1] ,
R, and hence the subset concerned is both open and closed. Thus the subset
of s(V ) corresponding to a projection operator P̂ P V is a clopen subset in
the spectral topology. Conversely, of course, each clopen subset of s(V )
corresponds to a projection operator P̂ whose representative function P̃ on
s(V ) is the characteristic function of the subset.

So in analogy with BS on 2, we may define a similar presheaf on 9,
which we will denote CloS:

• On objects: CloS(V ) is defined to be the set of clopen subsets of
the spectrum s(V ) of the algebra V; each such clopen set is the set
of multiplicative linear functionals k such that k(P̂ ) 5 1 for some
projector P̂ P V.

• On morphisms: for V2 , V1, we define

CloS(iV2V1)({k P s(V1).k(P̂ ) 5 1}) 5 {x P s(V2).x(G(iV2V1)(P̂ )) 5 1}

(36)

There is an isomorphism between G and CloS, and so we can think of G
on 9 as being the ‘clopen’ power object of S on 9.
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3.2. Sieve-Valued Generalized Valuations

In view of the discussion of propositions in the previous subsection, our
definition of a sieve-valued generalized valuation for the base category 9
will define the valuations on projectors in the explicit context of an algebra
V. That is to say, the truth-value associated with a projector P̂ depends on
the context of a particular algebra V containing P̂. As in any topos of pre-
sheaves (ref. 1, Appendix), the subobject classifier V in the topos Set9op

is
a presheaf of sieves. Since 9 is a poset, sieves may be identified with lower
sets in the poset. We define V as follows:

• On objects: V(V ) is the set of sieves in 9 on V. We recall that V(V )
has (i) a minimal element, the empty sieve, 0V 5 0⁄ , and (ii) a maximal
element, the principal sieve, trueV 5 ↓V :5 {V 8.V 8 # V}.

• On morphisms: V(iV2V1): V(V1) → V(V2) is the pullback of the
sieves in V(V1) along iV2V1 defined by

V(iV2V1)(S) 5 i*V2V1(S) :5 {iV3V2: V3 → V2.iV2V1 + iV3V2 P S}(3.7)

5{V3 , V2.V3 P S} (3.8)

for all sieves S P V(V1).

Then we define:

Definition 3.3. A sieve-valued generalized valuation on the category 9
in a quantum theory is a collection of maps nV: +(V ) → V(V ), one for each
‘stage of truth’ V in the category 9, with the following properties:

(i) Functional composition:

For any P̂ P +(9) and any V 8 # V so that iV8V : V 8 → V

nV8(G(iV8V (P̂ )) 5 i*V8V (nV (P̂ )) (3.9)

(ii) Null proposition condition:

nV (0̂) 5 0V (3.10)

(iii) Monotonicity:

If P̂, Q̂ P +(V ) with P̂ # Q̂, then nV (P̂ ) # nV (Q̂ ) (3.11)

We may wish to supplement this list with:
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(iv) Exclusivity:

If P̂, Q̂ P +(V ) with P̂Q̂ 5 0̂

and nV (P̂ ) 5 trueV , then nV (Q̂ ) , trueV (3.12)

(v) Unit proposition condition:

nV (1̂) 5 trueV (3.13)

Note that in writing Eq. (3.9), we have employed Definition 3.1 to
specify the coarse-graining operation in terms of an infimum of projectors,
as motivated by Theorem 4.1 of ref. 1.

The topos interpretation of these generalized valuations remains as dis-
cussed in Section 4.2 of ref. 1 and Section 4 of ref. 2. Adapting the results
and discussion to the category 9, we have in particular the result that because
of the FUNC condition, Eq. (3.9), the maps N n

V: +(V ) → V(V ) defined at
each stage V by

N n
V (P̂ ) 5 nV (P̂ ) (3.14)

define a natural transformation Nn from G to V. Since V is the subobject-
classifier of the topos of presheaves, Set9op

, these natural transformations are
in one-to-one correspondence with subobjects of G, so that each generalized
valuation defines a subobject of G. We will pursue this topic in more detail
in Section 4.4.3.

3.3. Sieve-Valued Valuations Associated with Quantum States

We recall (for example, ref. 1, Definition 4.5) that each quantum state
r defines a sieve-valued generalized valuation on 2 or 0 in a natural way.
For example, on 2, the generalized valuation was defined as

nr(A P D) :5 { f2: B̂ → Â|Prob(B P f (D); r) 5 1}

5{ f2: B̂ → Â |tr(rÊ[B P f (D)]) 5 1} (3.15)

Thus the generalized valuation associates to the proposition all arrows in 2
along which the projector corresponding to the proposition coarse-grains to
a projector which is ‘true’ in the usual sense of having a Born-rule probability
equal to 1. This construction is easily seen to be a sieve, and satisfies
conditions analogous to Eqs. (3.9)–(3.13) for a generalized valuation on 2
(ref. 1, Section 4.4).

We also recall that there is a one-parameter family of extensions of
these valuations defined by relaxing the condition that the proposition coarse-
grains along arrows in the sieve to a ‘totally true’ projector. That is to say,
we can define the sieve
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nr,r(A P D) :5 { f2: B̂ → Â.Prob(B P f (D); r) $ r}

5{ f2: B̂ → Â.tr(r Ê[B P f (D)]) $ r} (3.16)

where the proposition “A P D” is only required to coarse-grain to a projector
that is true with some probability greater than r, where 0.5 # r # 1.

Furthermore, if one drops the exclusivity condition, one can allow proba-
bilities less than 0.5, i.e., 0 , r , 0.5.

We now introduce the same kind of valuation using 9 as the base
category.

As was discussed in Section 3.1 in relation to G, when using the base
category 9 it is more natural to interpret a projector P̂ P +(V ) as a proposition
about the spectrum of the commutative subalgebra V rather than about the
value of just one operator. Such an augmented proposition at a stage V in 9
will correspond to a projector P̂ P +(V ) and can be thought of as the family
of propositions “A P D” for all Â P V that have P̂ as a member of their
spectral algebra with Ê[A P D] 5 P̂.

So we define a sieve-valued generalized valuation associated with a
quantum state r as follows:

Definition 3.4. The sieve-valued valuation nr
V1 of a projector P̂ P V1

associated with a quantum state r is defined by

nr
V1(P̂ ) :5 {iV2V1: V2 → V1.r[G(iV2V1)(P̂ )] 5 1} (3.17)

This assigns as the truth-value at stage V1 of a projector P̂ P V1 a sieve on
V1 containing (morphisms to V1 from) all stages V2 at which P̂ is coarse-
grained to a projector which is ‘totally true’ in the usual sense of having
Born-rule probability 1.

One readily verifies that Eq. (3.17) defines a generalized valuation in
the sense of Definition 3.3. The verification is the same, mutatis mutandis,
as for generalized valuations on 2 given in Section 4.4 of ref. 1. As an
example, we take the functional composition condition. Again, this requires
that the sieves pull back in the appropriate manner; if V2 # V1 and hence
iV2V1: V2 → V1, then

i*V2V1(n
r
V1(P̂ )) :5 {iV3V2: V3 → V2.iV2V1 + iV3V2 P nr

V1(P̂ )} (3.18)

5 {iV3V2: V3 → V2.r[G(iV2V1 + iV3V2)(P̂ )] 5 1} (3.19)

whereas

nr
V2(G(iV2V1)(P̂ )) :5 {iV3V2: V3 → V2.r[G(iV3V2)(G(iV2V1)(P̂ ))] 5 1} (3.20)

and hence FUNC is satisfied since G(iV2V1 + iV3V2)(P̂ ) 5
G(iV3V2)(G(iV2V1)(P̂ )).
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Again, we can obtain a one-parameter family of such valuations by
introducing a probability r:

nr,r
V1(P̂ :5 {iV2V1: V2 → V1.r [G(iV2V1) (P̂ )] $ r} (3.21)

4. INTERVAL-VALUED GENERALIZED VALUATIONS

4.1. Introducing Interval-Valued Valuations

The sieve-valued generalized valuations on 9 discussed in Section 3
and their analogues on 2 and 0 (discussed in refs. 1 and 2) are one way of
assigning a generalized truth value to propositions in a way that is not
prevented by the Kochen–Specker theorem. We are now going to investigate
another possibility—of assigning sets of real numbers to operators—and
relate it to our generalized valuations. An algebra V in 9 will be assigned a
subset of its spectrum, i.e., a set of multiplicative linear functionals on V
which corresponds to a subset of the spectrum of each operator in the algebra.

We will call such assignments ‘interval valuations’ as the primary moti-
vation for these assignments is the wish to assign some interval of real
numbers to each operator. Note that, in the latter context, ‘interval’ means
just some subset of R, that is, an interval in our sense need not be a con-
nected subset.

Despite the marked difference between interval-valued and sieve-valued
valuations—projectors or propositions versus algebras as arguments, and
sieves versus sets of real functionals as values—it turns out that these two
kinds of valuations are closely related.

4.2. Subobjects of S

We now consider assigning to each algebra V in 9 a clopen subset
I(V ) # s(V ). This set I(V ) of multiplicative linear functionals k on V leads
to an assignment to each self-adjoint operator Â P V of a subset of the
spectrum of the operator, DA 5 {k(Â ).k P I(V )} # s(Â ), in such a way
that the appropriate relationships between these subsets are obeyed, so that
if B̂ 5 f(Â ), we have DB 5 f(DA). For we note that DA is equal to Ã[I(V )],
where the Gelfand transform Ã: s(V ) → R is defined in Eq. (2.2). However,
I(V ) is a closed subset of the compact Hausdorff space s(V ), and hence is
itself compact. Then, since Ã: s(V ) → R is continuous, it follows that Ã[I(V )]
is also compact; thus DA is a compact subset of R.

On the face of it, the fact that DA is compact might appear problematic
for functions f : s(Â ) → R that are Borel but not continuous (since the image
of a compact set by a Borel function need not itself be compact). In effect,
the problem is that f + Ã: s(V ) → R may not be continuous, even though it
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is supposed to represent the operator B̂ 5 f(Â ). However, a more careful
study of the spectral theorem for a commutative von Neumann algebra shows
that the Borel function f + Ã can be replaced by a unique continuous function
(i.e., B̃) without changing anything of significance in the algebraic structure.4

In addition, there exists some continuous function f̃: R → R such that B̃ 5
f̃ + Ã, and the natural-looking equation DB 5 f(DA) is to be understood as
DB 5 f̃(DA) where necessary.

One of course expects to require such an interval-valued assignment I
to obey some version of FUNC along morphisms in the category 9. The
most obvious version is, for V2 , V1,

I(V2) 5 I(V1).V2 (4.1)

so that the functionals in I(V2) are just the restriction to V2 of those in I(V1).
But from the perspective of the theory of presheaves, it is natural to

take such assignments I as given by subobjects of S. These clearly exist—for
example, there is the trivial subobject assigning to each algebra the whole
of its spectrum. One can think of the Kochen–Specker theorem as restricting
the ‘smallness’ of the subobjects: we cannot take a subobject that consists
of a singleton set at each stage, since that would be a global element. If I is
a subobject of S, it will obey (by the definition of ‘subobject’) a weaker
version of FUNC, viz.,

I(iV2V1) (I(V1)) :5 I(V1) .V2 # I(V2) (4.2)

Example 1. The ‘true’ Subobject of S Arising from a Quantum State.
One subset of the spectrum of an operator Â which arises naturally from a
quantum state r is the set of values which can occur in a measurement of Â
when the system is in the state r. This set DA is given in the following way.

For any pair of projectors Ê[A P D], Ê[A P D8] P WA such that tr(rÊ[A P
D]) 5 tr(rÊ[A P D8]) 5 1, there is a smaller projector Ê[A P D9] 5 Ê[A P
D]Ê[A P D8] (where D9 5 D ù D8) such that tr(rÊ[A P D9]) 5 1, and so
we may form a descending net of projectors whose infimum exists and
belongs to WA , since WA is complete. Thus there is a smallest projector Êmin

which is of the form Ê[A P DA] for some subset DA of the spectrum of Â.
Furthermore, the net of projectors converges strongly (and therefore weakly)
to Ê[A P DA], and therefore, since, for fixed r, the map B(*) → C given
by Â → tr(rÂ ) is weakly continuous, it follows that tr(rÊ[A P DA]) 5 1.
This operator Êmin 5 Ê[A P DA] is sometimes called the support of Â in the
state r.

For an algebra V, we can define the corresponding subset of its spectrum
by taking those multiplicative linear functionals on V which assign the value

4 For example, see the discussion on p. 324 in ref. 6.



Topos Perspective on Kochen–Specker Theorem 1429

1 to each ‘true projector’, i.e., those projectors in T r(V ) :5 {P̂ P V.tr(rP̂ )
5 1} , +(V ). The connection to the above assignment to operators is clear;
for if Â P V, then DA 5 {k(Â ).k(P̂ ) 5 1, ∀P̂ P T r(V )}.

So the corresponding ‘true subobject’ of S is given by

I r(V ) 5 {k P s(V ).k(P̂ ) 5 1, ∀P̂ P T r(V )} (4.3)

Again, since the map P̂ → tr(rP̂ ) is weakly continuous, the infimum Q̂ :5
inf{P̂ P T r(V )} is in T r(V ). Since k(Q̂ ) 5 1 implies k(P̂ ) 5 1 for all P̂ P
T r(V ), the above construction may be written as the clopen set

I r(V ) :5 {k P s(V ).k(Q̂ ) 5 1} (4.4)

and so for nontrivial Q̂ this will necessarily be a proper subset of s(V ) (cf.
the discussion at the end of Section 3.1 on the connection between projectors
and subsets of spectra, in relation to CloS).

The above construction describes a subobject of S since, if we have
V2 , V, then

I r(V2) 5 {k P s(V2).k(P̂ ) 5 1, ∀ P̂ P T r(V2)} (4.5)

and since T r(V2) 5 {P̂ P V2.tr(rP̂ ) 5 1} # Tr(V ), we have that Q̂2 $ Q̂.
Therefore {k.k(Q̂ ) 5 1} # {k.k(Q̂2) 5 1}, and hence I r(V ).V2 , I r(V2) as
required for the subobject condition (4.2) to hold.

Example 2. Subobjects of S from Sieve-Valued Valuations. Given an
extra condition on a sieve-valued valuation n, the above construction of the
‘true subobject’ of S can be adapted to use n to define an interval-valuation
I n via

I n(V ) 5 {k P s(V ).k(P̂ ) 5 1, ∀ P̂ P T n(V )} (4.6)

where now we define

T n(V ) :5 {P̂ P +(V ).nV(P̂ ) 5 trueV} (4.7)

We now look at the conditions under which this gives a subobject of
S. We note first that Eq. (4.6) is not in general a proper subset of S(V ). It
will be empty unless the infimum Q̂ of the set of projectors T n(V ) is nonzero;
for we can again write In(V ) in the form of the clopen set

I n(V ) 5 {k P s(V ).k(Q̂ ) 5 1} (4.8)

which must be empty if Q̂ 5 0̂, the zero projector.
The condition on n for this construction to be a subobject is a matching

condition on this infimum:

For V1 , V we require that Q̂1 $ Q̂ (4.9)

where Q̂ and Q̂1 are the infima of the sets T n(V ) and T n(V1), respectively,
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defined as above. For, if this is not the case, there will be some k P s(V )
such that k(Q̂ ) 5 1 [and hence k P In(V )] but k(Q̂1) , 1. Therefore
k.V1 ¸ I r(V1), and the subobject condition (4.2) will not be satisfied.

A sufficient condition for Eq. (4.9) to hold is that if V1 , V, then T n(V1)
# T n(V ). This condition is satisfied for the valuation nr arising from a
quantum state in the probability one case via Eq. (3.15), and the resulting
construction is, of course, the same as Example 1.

The condition also holds for valuations from a quantum state nr,r where
a probability r is introduced, as in Eq. (3.21). In that case, however, there
will be many algebras V P 9 where there is no nontrivial infimum to the
set T n(V ), and so the corresponding subobject of S will be the empty set
over much of 9.

4.3. Global Elements of G

As was discussed at the end of Section 3.1, there is a natural interpretation
of the coarse-graining presheaf G as a subobject of the power object of S,
i.e., a presheaf of subobjects of S.

Given this interpretation of G, it is natural to take interval-valued valua-
tions as given by global elements of G. A global element g of G obeys, for
V2 , V1,

g(V2) 5 G(iV2V1) (g(V1)) (4.10)

which is a FUNC condition with an equality like Eq. (4.1) [as opposed to
the subset version (4.2) required for subobjects of S].

Recalling that for any projector selected by g at stage V1, i.e., g(V1) 5
P̂ P +(V1), the action of G is G(iV2V1): P̂ ° inf{Q̂ P +(V2).P̂ #
iV2V1(Q̂ )}, we see that any such global element g defines an assignment Ig

to each algebra of a subset of its spectrum by

Ig (V1) :5 {kPs(V1).k(g(V1)) 5 1} (4.11)

and, since P̂ # G(iV2V1)(P̂ ), we see that k(P̂ ) 5 1 implies k(G(iV2V1)(P̂ )) 5
1, so that Ig(V1).V2 # Ig(V2), and hence this construction is a subobject of S
as well as an interval-valued valuation satisfying the stronger version of
FUNC, Eq. (4.1).

In this way, an interval-valued valuation—assigning a subset of the
spectrum at each stage—is given by every global element of G.

As in Example 2 of the previous subsection, certain sieve-valued valua-
tions can be used to give global elements of G. The natural way to define
such a global element is by
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gn(V1) :5 inf{P̂ P +(V1).nV1 (P̂ ) 5 trueV1} (4.12)

5: Q̂1 5 inf{P̂ |P̂ P T n(V1)} (4.13)

where again, as in Eq. (4.7), T n(V1) :5 {P̂ P +(V1).nV1(P̂ ) 5 trueV1}.
The matching condition for this to be a global element of G is stronger

than for it to be a subobject of S: we now require that for every V2 , V1,

inf{P̂ P T n(V2)} 5: Q̂2 5 G(iV2V1)(inf{P̂ P T n(V1)}) 5 G(iV2V1)(Q̂1)

(4.14)

The case of a valuation arising from a quantum state for the probability
one case—Example 1 in the previous subsection—may be cast in this form.
For that case we have that if V2 , V1, then T r(V2) 5 {P̂ P V2.tr(rP̂ ) 5 1}
# T r(V1), and so each P̂2 P V2 is given by G(iV2V1)(P̂1) for some P̂1 P V1,
since in particular this is true when P̂1, P̂2 denote the same projector thought
of as belonging to V1 and V2, respectively. Then, since P̂1 # P̂ 81 implies
G(iV2V1)(P̂1) # G(iV2V1)(P̂ 81), it follows that inf{P̂ P T r(V2)} 5
G(iV2V1)(inf{P̂ P T r(V1)}), and so we have a global element of G.

The valuations nr,r arising from a quantum state via the probability r
construction [Eq. (3.21)], while giving subobjects of S, do not satisfy the
stronger condition necessary to form global elements of G.

One way to avoid these issues arising from having to take infima of
certain sets of projectors is to look at subobjects of G, rather than its
global elements.

4.4. Subobjects of G

As described at the end of Section 3.2, every sieve-valued valuation n
on projectors induces a morphism N n: G → V in the topos of presheaves
over 9, and hence corresponds to a subobject of G. This subobject Tn is
given at each stage V by the set

T n(V ) 5 {P̂ P +(V ).nV (P̂ ) 5 trueV} (4.15)

This is the same construction as Eq. (4.7), but now considered as defining
a subobject of G. In this subsection we discuss such subobjects, in particular
those arising from sieve-valued valuations associated with a quantum state
r for the probability 1 and probability r cases, as defined in Eqs. (3.17)
and (3.21).

4.4.1. The Probability 1 Case

To obtain a subobject of G from a quantum state r, we take at each
stage V1 the subset of the lattice of projectors +(V1),
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T r(V1) :5 {P̂ P V1.tr(rP̂ ) 5 1} , +(V1) (4.16)

This is, of course, the subobject arising via Eq. (4.15) from the sieve-valued
valuation nr associated with the quantum state r, defined in Eq. (3.17).

This forms a subobject of the coarse-graining presheaf since, if
iV2V1: V2 → V1, then for any P̂ P +(V1)

tr(r(G(iV2V1)(P̂ ))) $ tr(rP̂ ) (4.17)

Hence it follows that

G(iV2V1)(T
r(V1)) # T r(V2) (4.18)

and therefore Tr is a genuine subobject of G. Also, +(V2) # +(V1) and for
all P̂2 P +(V2), G(iV2V1)(P̂1) 5 P̂2, where P̂1, P̂2 denote the same projector
P̂ thought of as belonging to +(V1) and +(V2), respectively. It follows that
for all P̂2 P Tr(V2) we have P̂1 P Tr(V1), and therefore

T r(V2) # G(iV2V1)(T
r(V1)) (4.19)

and so this subobject obeys a functional composition principle T r(V2) 5
G(iV2V1)(T

r(V1)) with an equality.
In this particular case, we can use the subobject T of G to give at each

stage a subset Ir(V ) of the spectrum of the von Neumann algebra V via

I r(V ) :5 {k P S(V ).k(P̂ ) 5 1, ∀P̂ P T r(V )} , S(V ) (4.20)

Since the lattice +(V ) is complete, there exists a smallest projector in
the set Tr(V ) as in the case of the global element of G: Q̂ :5 inf{P̂.P̂ P
Tr(V )}. This is then the single projector at each stage defined by Eq. (4.13)
for the case where n is the sieve-valuation associated with the state r, and
so the global element construction may be recovered in this case.

This then corresponds to a single augmented proposition at each stage,
namely the collection of propositions “A P D” for each operator Â P V and
Borel subset D such that Ê[A P D] 5 Q̂.

4.4.2. The Probability r Case

As discussed in Section 4.3, not all sieve-valuations lead to global
elements of G or to subobjects of S. In particular, there is no global element
of G associated with the probability r case for a quantum state r. However,
we can take a subobject of G:

T r,r(V ) :5 {P̂ P V.tr(rP̂ ) $ r} (4.21)

where 0 # r # 1. Heuristically, this is the set of propositions in +(V ) which
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are assigned a probability greater than r. Equation (4.17) still holds, and
hence this still gives a genuine subobject of G.

The propositions {P̂ P V.tr(rP̂ ) $ r} do not in general have a nontrivial
infimum, (except when r 5 1), and the infima will not obey the necessary
matching conditions to allow us to construct a global element of G in the
same way as was possible in the r 5 1 case.

4.4.3. Semantic Subobjects

This discussion of certain subobjects of G induced via Eq. (4.15) by
generalized valuations n prompts us to ask what characterizes subobjects of
G which can be induced in this way. The defining conditions for a generalized
valuation n, Eqs. (3.9)–(3.12), give four properties of the corresponding
subobject Tn of G defined according to Eq. (4.15):

1. Functional composition: This ensures that we have a genuine subob-
ject Tn of G, since it implies in particular that for all P̂ P Tn(V1),
so that n(P̂ ) 5 trueV1, it is true that nV2(G(iV2V1)(P̂ )) 5 trueV2, so
G(iV2V1)(T

n(V1)) # Tn(V2).
2. Null proposition condition: This implies that the always-false projec-

tor 0̂V never belongs to Tn(V ).
3. Monotonicity: For P̂, Q̂ P +(V ) with P̂ # Q̂, this condition implies

that if P̂ P Tn(V ), then also Q̂ P Tn(V ); so Tn(V ) is required to
be an upper set in +(V ).

4. Exclusivity: If P̂, Q̂ P +(V ) with P̂Q̂ 5 0̂ and P̂ P Tn(V ), then
Q̂ ¸ Tn(V ).

Note that properties 1 and 2 are consequences of Eqs. (3.9) and (3.10)
respectively, and weaker than them. On the other hand, properties 3 and 4
are equivalent to Eqs. (3.11) and (3.12), respectively.

We may wish to relax the exclusivity condition here (and the correspond-
ing condition for generalized valuations) depending on the type of valuation
being studied. As has already been pointed out, the exclusivity condition is
not satisfied (and would not be expected to hold) for valuations where the
probability required for a proposition to belong to the corresponding subobject
of G is less than a half.

Given properties 1–4, we can then turn this around, and define a semantic
subobject of G as being a subobject satisfying these properties. Semantic
subobjects then form a set of possible generalized valuations for our quan-
tum theory.

4.5. Interval-Valued Valuations from Ideals
We now present another way of obtaining an interval-valued valuation

on 9 which does not rely on the use of sieve-valuations and the coarse-
graining presheaf.
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We recall that the closed ideals in a commutative von Neumann algebra
V are in one-to-one correspondence with the closed subsets of the spectrum
s(V ) of V. More precisely, according to the spectral theorem, the algebra V
is isomorphic to the algebra C(s(V )) of continuous, complex-valued functions
on its spectrum; and a closed ideal in the algebra corresponds to the set of
all functions in C(s(V )) that vanish on the associated closed subset of s(V ).

Furthermore, according to a general result about extremely disconnected
Hausdorff spaces [which s(V ) is], each closed subset of s(V ) differs from
a unique clopen set by a meagre set. Therefore, any assignment of a closed
ideal to each algebra in 9 will produce an interval-valued valuation assigning
to each V in 9 a clopen subset J of its spectrum. The functions in the ideal
are then precisely those that are disjoint to the characteristic function of J,
i.e., those operators in V orthogonal to the projector P̂ that corresponds to
the characteristic function of J.

Furthermore, there is a natural way to make such assignments of closed
ideals to each algebra V in 9. We note that an ideal i in any noncommutative
von Neumann algebra 1 will induce an ideal iV , V in each of its commutative
subalgebras V by restriction: iV 5 i ù V. In this way, the ideal i assigns to
each V the clopen subset of s(V ) associated with iV .

We note that the lattice of closed, two-sided ideals in any noncommuta-
tive algebra 1 is an example of a quantale [7]. This structure can be viewed
as the analogue of a spectrum for the noncommutative von Neumann algebra
1, and as we have just shown, it represents another natural collection of
interval-valued valuations in our framework.

Example. The subset ic of the set B(*) of bounded operators on some
Hilbert space * defined by

ic 5 {Â P B(*).Âc 5 0} (4.22)

forms a closed left ideal since B̂Âc 5 0 for all B̂ P B(*), Â P ic. This
induces a two-sided ideal in each commutative von Neumann subalgebra V:

ic(V ) 5 {Â P V.Âc 5 0} (4.23)

We will now show that this ideal corresponds to the ‘true’ subobject of
S described in Example 1 of Section 4.2 for the quantum state c.

We will denote the set of projectors in ic(V ) by 3(ic(V )). If the projectors
Q̂1, Q̂2 P 3(ic(V )), so that Q̂1c 5 0 5 Q̂2c, then we also have (Q̂1 1 Q̂2)c
5 0, so (Q̂1 1 Q̂2) P 3(ic(V )). It follows that there exists a largest projector
Q̂max P ic(V )

Q̂max 5 sup 3(ic(V )) (4.24)

As was noted above, a projector in V corresponds to a characteristic
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function in C(s(V )) of some clopen subset J , s (V ), and the set of functions
disjoint to a characteristic function are the functions in the ideal. The ideal
in V is then associated with the subset of s(V ) for which the projector (1̂ 2
Q̂max) corresponds to the characteristic function, i.e., the set {k P s(V ).k(1̂ 2
Q̂max) 5 1}. We also note that (1̂ 2 Q̂max)c 5 c, and so ^c. (1̂ 2 Q̂max).c&
5 1, and indeed (1̂ 2 Q̂max) is the smallest projector with this property. This
therefore corresponds to the subobject of S given by Ir in Eq. (4.4) for the
state r on V given by r(Â ) 5 ^c.Â |c&.

5. CONCLUSIONS

In this paper, we have extended the topos-theoretic perspective on the
assignment of values to quantities in quantum theory to the base category 9
of commutative von Neumann algebras, a category which generalizes the
categories of contexts 2 and 0 used in refs. 1 and 2. As we have seen, the
main results of refs. 1 and 2, both the leading ideas and the mathematical
constructions, can be adapted to the von Neumann algebra case. (Though we
have not spelt out all the details of this adaptation piece by piece, one can
check the details for the topics we have omitted—for example, classical
analogues—and general motivations for sieve-valued valuations, as discussed
in ref. 2).

This adaptation of our results to 9 is straightforward, except that, as
noted in Section 3.1, we need to be careful about two issues: (i) about
interpreting a proposition “A P D” relative to a von Neumann algebra V as
a context, and (ii) about the properties of spectral topologies. The upshot is
that (i) we interpret a projector P̂ at a context V in terms of all “A P D”
with A P V and E[A P D] 5 P̂, and (ii) G is isomorphic to the clopen power
object CloS of the spectral presheaf S.

Accordingly, we conclude that the base category 9 of commutative von
Neumann algebras is as natural a basis for developing the topos-theoretic
treatment of the values of quantities in quantum theory, as were our previous
categories 2 and 0; indeed, in certain respects 9 is a better basis, since it
includes the others in a natural way. In particular, it is a natural basis for
addressing the various topics listed in Section 6 of ref. 1.

In this paper, we have addressed one such topic, using 9: that of interval-
valued valuations. As we saw in Section 4, there are close connections
between our sieve-valued valuations and the assignment to quantities of
subsets of their (operators’) spectra, and so also the assigments to commutative
algebras of subsets of their spectra. We displayed these connections in various
ways: in terms of subobjects of S, in terms of global elements of G, and in
terms of subobjects of G. One main idea in making these connections was
the set T n(V ) of projectors P̂ P V that are “wholly true” according to the
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sieve-valued valuation n, which for the case of n given by a quantum state
r is essentially the familiar quantum-theoretic idea of the support of a state.
Finally, we noted in Section 4.5 that once we use 9 rather than 2 or 0 as
our base category of contexts, we can use ideals in the von Neumann algebras
to define interval-valued valuations in a natural way, though again, care is
needed about the spectral topologies.
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